The Effect of Modified Couple Stress Theory on Buckling and Vibration Analysis of Functionally Graded Double-Layer Boron Nitride Piezoelectric Plate Based on CPT

Authors

  • M Mohammadimehr Department of Solid Mechanics ,Faculty of Mechanical Engineering, University of Kashan
  • M Mohandes Department of Solid Mechanics ,Faculty of Mechanical Engineering, University of Kashan
Abstract:

In this article, the effect of size-dependent on the buckling and vibration analysis of functionally graded (FG) double-layer boron nitride plate based on classical plate theory (CPT) under electro-thermo-mechanical loadings which is surrounded by elastic foundation is examined. This subject is developed using modified couple stress theory. Using Hamilton's principle, the governing equations of motion are obtained by applying a modified couple stress and von Karman nonlinear strain for piezoelectric material and Kirchhoff plate. These equations are coupled for the FG double-layer plate using Pasternak foundation and solved using Navier’s type solution. Then, the dimensionless natural frequencies and critical buckling load for simply supported boundary condition are obtained. Also, the effects of material length scale parameter, elastic foundation coefficients and power law index on the dimensionless natural frequency and critical buckling load are investigated. The results demonstrate that the dimensionless natural frequency of the piezoelectric plate increases steadily by growing the power law index. ‌‌Also, the effect of the power law index on the dimensionless critical buckling load of double layer boron nitride piezoelectric for higher dimensionless material length scale parameter is the most.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Vibration analysis of a double layer microshell utilizing a modified couple stress theory

In this paper, dynamic modeling of a double layer cylindrical functionally graded (FG) microshell is considered. Modeling is based on the first-order shear deformation theory (FSDT), and the equations of motion are derived using the Hamilton's principle. It assumes that functionally graded length scale parameter changes along the thickness. Generalized differential quadrature method (GDQM) is u...

full text

Free Vibration Analysis of Sandwich Micro Beam with Piezoelectric Based on Modified Couple Stress Theory and Surface Effects

In this paper, the free vibration analysis of sandwich micro beam with piezoelectric layers based on the modified couple stress and surface elasticity theories are investigated. The Hamilton’s principle is employed to derive the sandwich micro beam with piezoelectric based on modified couple stress theory incorporating with Gurtin- Murdoch surface theory. The generalized differential quadrature...

full text

Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory

The present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is ...

full text

A FSDT model for vibration analysis of Nano rectangular FG plate based on Modified Couple Stress Theory under moving load

In present paper, vibration of Nano FGM plate based on modified couple stress and First Order Shear Deformation Theories (FSDT) under moving load has been developed. Basic equations and linear strains are introduced by first order shear deformation theory and Mori Tanaka’s model is used for the plate. The module of elasticity and density are assumed to vary only through thickness of plate. Gove...

full text

Free Vibration Analysis of Nonuniform Microbeams Based on Modified Couple Stress Theory: an Analytical Solution

In this study, analytical solution is presented to calculate the free vibration frequencies of nonuniform microbeams. Scale effects are modelled using modified couple stress theory and the microbeam is assumed to be thin while Poisson's ratio effects are also taken into account. Nonuniformity is presented by exponentially varying width among the microbeam while the thickness remains constant. R...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 3

pages  281- 298

publication date 2015-09-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023